Package: roads 1.2.0.9000

Sarah Endicott

roads: Road Network Projection

Iterative least cost path and minimum spanning tree methods for projecting forest road networks. The methods connect a set of target points to an existing road network using 'igraph' <https://igraph.org> to identify least cost routes. The cost of constructing a road segment between adjacent pixels is determined by a user supplied weight raster and a weight function; options include the average of adjacent weight raster values, and a function of the elevation differences between adjacent cells that penalizes steep grades. These road network projection methods are intended for integration into R workflows and modelling frameworks used for forecasting forest change, and can be applied over multiple time-steps without rebuilding a graph at each time-step.

Authors:Sarah Endicott [aut, cre], Kyle Lochhead [aut], Josie Hughes [aut], Patrick Kirby [aut], Her Majesty the Queen in Right of Canada as represented by the Minister of the Environment [cph], Province of British Columbia [cph]

roads_1.2.0.9000.tar.gz
roads_1.2.0.9000.zip(r-4.5)roads_1.2.0.9000.zip(r-4.4)roads_1.2.0.9000.zip(r-4.3)
roads_1.2.0.9000.tgz(r-4.4-any)roads_1.2.0.9000.tgz(r-4.3-any)
roads_1.2.0.9000.tar.gz(r-4.5-noble)roads_1.2.0.9000.tar.gz(r-4.4-noble)
roads_1.2.0.9000.tgz(r-4.4-emscripten)roads_1.2.0.9000.tgz(r-4.3-emscripten)
roads.pdf |roads.html
roads/json (API)
NEWS

# Install 'roads' in R:
install.packages('roads', repos = c('https://landscitech.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/landscitech/roads/issues

Datasets:

On CRAN:

6.58 score 4 stars 29 scripts 229 downloads 9 exports 34 dependencies

Last updated 3 months agofrom:7ba9be4528. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 25 2024
R-4.5-winOKOct 25 2024
R-4.5-linuxOKOct 25 2024
R-4.4-winOKOct 25 2024
R-4.4-macOKOct 25 2024
R-4.3-winOKOct 25 2024
R-4.3-macOKOct 25 2024

Exports:getDistFromSourcegetLandingsFromTargetgradePenaltyFnplotRoadsprepExDataprojectRoadsrasterizeLinerasterToLineSegmentssimpleCostFn

Dependencies:classclassIntclicpp11data.tableDBIdplyre1071fansigenericsglueigraphKernSmoothlatticelifecyclemagrittrMASSMatrixpillarpkgconfigproxyR6Rcpprlangs2sfterratibbletidyselectunitsutf8vctrswithrwk

Reconstruct road development history

Rendered fromReconstructRoadHistory.Rmdusingknitr::rmarkdownon Oct 25 2024.

Last update: 2024-03-26
Started: 2022-10-31

roads Package

Rendered fromroads-vignette.Rmdusingknitr::rmarkdownon Oct 25 2024.

Last update: 2024-06-25
Started: 2021-11-09

Using the grade penalty function

Rendered fromgrade-penalty.Rmdusingknitr::rmarkdownon Oct 25 2024.

Last update: 2024-06-26
Started: 2024-05-16

Readme and manuals

Help Manual

Help pageTopics
Data from the CLUS exampleCLUSexample
Grade penalty example datadem_example
Demonstration set of 10 input scenariosdemoScen
Get landing target points within harvest blocksgetLandingsFromTarget
Grade penalty edge weight functiongradePenaltyFn
Plot projected roadsplotRoads
Prepare example dataprepExData
Project road networkprojectRoads projectRoads,ANY,ANY,ANY,ANY,ANY,ANY,ANY,ANY,list-method projectRoads,ANY,ANY,ANY,ANY,ANY,ANY,ANY,ANY,missing-method
Convert raster to linesrasterToLineSegments
Simple cost edge weight functionsimpleCostFn